Neutrino Oscillation Tomography

(and Neutrino Absorption Tomography)

(and Neutrino Parametric-Refraction Tomography)

Sanshiro Enomoto University of Washington

CIDER Geoneutrino Working Group Meeting, UCSB, 1 July 2014

Everything Shown Here was Taken from:

Letter of Intent: The Precision IceCube Next Generation Upgrade (PINGU)

arXiv:1401.2046v1 [physics.ins-det] 9 Jan 2014

Letter of Intent: The Hyper-Kamiokande Experiment — Detector Design and Physics Potential arXiv:1109.3262v1 [hep-ex] 15 Sep 2011

and references in there

Atmospheric Neutrinos

Super-Kamiokande in Japan (10 MeV ~ 100 GeV)

Ice Cube at South Pole (100 GeV ~)

Atmospheric Neutrinos and Neutrino Oscillation

Probability of detecting v_{μ} after distance L

 $P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \sin^2 \left(3 \times 10^{-3} \cdot \frac{L/\text{km}}{E/\text{GeV}} \right)$

(w/o matter effects)

Oscillation Tomography using Matter Effect

Neutrino oscillation is affected by Electron Density

D. R. Grant, Neutrino 2014

Sensitivity to Core Z/A

If Density is known, electron density gives Z/A ratio

<u>Wish List</u>

- ✓ Gigantic Detector (~ Mega ton)
- ✓ Dense Detector (~1 GeV threshold)
- ✓ Good Energy and Angular Sensitivity
- ✓ Normal Hierarchy Preferred ☺
 (antineutrino cross-section is smaller)

Atmospheric Neutrino Flux S Super-Kv. S-I Fréjus v. cm⁻² Fréjus v_e^µ AMANDA v. 10¹ unfolding forward folding IceCube v. € 10 unfolding Ъ IceCube v-induced cascades 10 prompt vur ve 10 Honda v. Bartol v

2

3

6

5

- Ice-Cube is too sparse (Deep-Core detects E >10GeV)
- Super-Kamiokande is too small (total 50 k-ton)

PINGU: Ice-Cube Upgrade for Lower Energy

Letter of Intent:

The Precision IceCube Next Generation Upgrade (PINGU)

arXiv:1401.2046 (9 Jan 2014)

✓ ~3 M-ton effective volume
 ✓ x20 photo cathode density
 ✓ sensitivity downto few GeV

\$100M, ready in ~5 years

Hyper-Kamiokande (Super-K successor)

Letter of Intent:

The Hyper-Kamiokande Experiment

— Detector Design and Physics Potential —

arXiv:1109.3262 (15 Sep 2011)

- ✓ 0.99 M-ton
- ✓ 20% photo coverage
- ✓ few MeV threshold

Difference in Number of Events

✓ Pyrolite model can be tested at 1σ after 5 years (Normal Hierarchy)

- ✓ Inverted Hierarchy will limit the sensitivity to ~20%,
 "because antineutrino cross-section is half of neutrinos" ...
- ✓ Dependence on θ_{13} value is small
- \checkmark Better energy resolution will largely improve the sensitivity

Hyper-Kamiokande might do it better

- \checkmark Better energy and angular resolutions \checkmark v $_{\rm e}$ channel usable
- Smaller active volume??

HK: 1 M-ton water cherenkov

Low-energy sensitivity increases effective volume

Thanks to its good low energy performance for upward-going muons, Hyper-K has a larger effective area for upward-going muons below 30 GeV than do cubic kilometer-scale neutrino telescopes (see Fig. 65 in Sec. IIIE). Additionally, fully contained events in Hyper-K have energy, direction, and flavor reconstruction and resolutions as good as those in Super-K. This high performance will

Kotoyo Hoshina, AGU Fall 2012

FLATCORE model doesn't conserve Earth's mass, but still useful to estimate the resolution of Earth's density at core angle with the IceCube

<u>Appendix:</u> <u>Parametric Enhancement is Sensitive to CMB?</u>

<u>Summary</u>

•

- · Neutrino Oscillation Tomography
 - Direct measurement of core composition
 - Uses oscillation matter effect (MSW) at $1\sim10$ GeV
 - PINGU will measure Z/A at ~8% accuracy (NH case), possibly better
 - Inverted hierarchy will limit the sensitivity to ~20%
 - Hyper-Kamiokande might be able to do it better
 - ORCA (KM3NeT, 1.8 M-ton in sea water) can do the same?
 - Neutrino Absorption Tomography
 - Direct measurement of core density
 - Uses neutrino absorption at $\sim 10 \text{ TeV}$
 - 10 yr Ice-Cube will discriminate core from mantle

Back Up

Photo Coverage vs Energy Threshold

D. R. Grant, Neutrino 2014

MSW Resonance

M. Honda et al, Phys Rev D 70, 043008 (2004)